The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses
by: John Krahn
Canadian Geotechnical Journal, Volume 40, Number 3, 1 June 2003 , pp. 643-660(18).
The curtain wall—a non-bearing wall attached to a building's structural frame like a curtain made of metal or, more likely
glass—is an omnipresent feature of contemporary architecture. Variations of pattern and color, transparency and opacity offer
the architect almost limitless design possibilities, a tremendous palette for "skinning" the structural frame of buildings from museums to skyscrapers.There are few practitioners of curtain wall design as accomplished as Cesar Pelli & Associates, and this book presents twenty of their most exemplary projects. Arranged by material—glass, metal, stone—the conception and development of each individual facade is revealed and construction details comprehensively documented through numerous drawings. Any practicing architect interested in state-of-the-art curtain wall design will need to own this indispensable and inspiring book.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Introduction to structural dynamics and aeroelasticity
Author: Dewey H. Hodges, G. Alvin Pierce | Size: 26,5 MB | Format:PDF | Publisher: Cambridge University Press | Year: 2002 | pages: 170 | ISBN: 0521806984
Aeroelastic and structural dynamic phenomena play an important role in many facets of engineering. In particular, an understanding of these disciplines is essential to the design of aircraft and space vehicles and longest suspension bridge. This text provides an introduction to structural dynamics and aeroelasticity, with an emphasis on conventional aircraft. The primary areas considered are structural dynamics, static aeroelasticity, and dynamic aeroelasticity. The structural dynamics material emphasizes vibration, the modal representation, and dynamic response. Aeroelastic
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Pore structure of cement-based materials : testing interpretation & requirements
Author: Kalliopi K Aligizaki Publisher: Taylor & Francis | Year: 2005 | pages: 432 | ISBN: 9780419228004
Summary:
This book provides a clear introduction to the various experimental techniques used for characterizing the pore structure of hardened cement-based materials. It begins with a comprehensive outline of the traditional and the recently-developed techniques for determining the pore structure of hardened cement paste, and continues with a discussion of the methods used for air-void analysis in air-entrained concrete. Directed to the student and engineer, this volume serves as a useful introduction to the topic of microstructure characterization, and provides a comprehensive set of references for further information.
Contents:
Introduction. Pores in Cement Paste. Methods for Characterizing Pore Structure. Definition of Pore Structure Parameters. Specimen Pretreatment Techniques. Drying Techniques. Solvent Replacement. Preparation for Microscopic Analysis. Mercury Intrusion Porosimety. Theory and Testing Procedure. Plots Obtained. Range of Sizes Determined. Hysteresis in Pore Size Distribution. Advantages and Limitations. Gas Adsorption. Theory and Testing Procedure. Analysis of Data. Range of Sizes Determined. Adsorption Hysteresis. Different Adsorbates Used. Advantages and Limitations. Displacement Methods. Evaporable Water Content. Solvent Exchange. Helium Pycnometry. Nuclear Magnetic Resonance. Instrumentation. Theoretical Aspects. Pore Size Determination. Magnetic Resonance Imaging. Advantages and Limitations. Small Angle Scattering. Theoretical Aspects. Experiment and Analysis. Plots Obtained. Range of Sizes Determined. Advantages and Limitations. Microscopic Techniques. Optical Microscopy. Electron Microscopy. Stereological Methods for Air Void Analysis. Comparison of Results Obtained by Various Techniques. Comparison with Mercury Intrusion Porosimetry. Comparison with Nitrogen Adsorption. Comparison with Replacement Techniques. Comparison with Microscopic Techniques.
This is a well-known classic thesis from Caltech entitled: the response of nonlinear multi-story structures subjected to earthquake excitation. The thesis has proposed the One-Component and Two-Component Beams model, a model to represent a nonlinear beam which has used the combination of spring - linear element - spring. This model was then enhanced and hence known as lumped plasticity model which is currently available in SAP2000/ETABS/Ruaumoko/OpenSees. In Ruaumoko, the author name is used as the name of a nonlinear elements in FRAME element (so-called Giberson beam).
The thesis is very useful in understanding the nonlinear model of beam especially for those who are interesting in analytical modelling.
DIRECT LINKS
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
BS ISO 14347:2008 Fatigue - Design procedure for welded hollow-section joints - Recommendations
Author: International Institute of Welding, Commission XV | Size: 2.4 MB | Format:PDF | Publisher: ISO | Year: 2008 | pages: 76 | ISBN: 978 0 580 53490 4
1.1 General
This International Standard gives recommendations for the design and analysis of unstiffened, welded, nodal
joints in braced structures composed of hollow sections of circular or square shape (with or without
rectangular chord) under fatigue loading.
This International Standard applies to structures:
a) fulfilling quality requirements for hollow sections (see Annex A);
b) complying with recommended weld details (see Annex B);
c) employing permitted steel grades (see 1.2);
d) having hollow section joints (see 1.3);
e) having either
1) square or rectangular hollow sections with a thickness between 4 mm and 16 mm, or
2) circular hollow sections with a thickness between 4 mm and 50 mm;
f) having as stress range the range of “hot-spot” stress;
g) having identical brace (branch) members.
1.2 Materials
This International Standard applies to both hot-finished and cold-formed steel structural hollow sections,
complying with the applicable national manufacturing specification, that fulfil specified quality requirements
(see Annex A).
1.3 Types of joints
This International Standard applies to joints consisting of circular hollow sections (CHS) or rectangular hollow
sections (RHS) as used in uniplanar or multiplanar trusses or girders, such as T-, Y-, X-, K-, XX-, and
KK-joints (see Figure 1 and Figure 2).
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Lectures 27 to 39 are missing...If anyone have them Please Share
This Material Was Very Usefull For Me
I hope will be the same for you.....Enjoy
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Posted by: 3fan - 12-12-2010, 08:30 AM - Forum: Archive
- No Replies
Dear members i am looking for this publication, if you can help me:
Guidelines of engineering practice for braced and tied-back excavations
(ASCE GEOTECHNICAL SPECIAL PUBLICATIONS No 74)
Author : American Society of Civil Engineers. Committee on Earth Retaining Structures
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Features
Discusses CFRP laminate plates, and GFRP plates, composite sandwich panels
Addresses both high and low velocity impacts
Examines impact stress analysis of composite plates and tubes
Explores damage resistance and damage tolerance
Summary
Much of the early, pioneering work on the properties of composites under impact is still conceptually relevant, yet the results of many such analyses are outdated. The accuracy of these results depend specifically on the materials used (fibre, resin), interface, and method of fabrication. Development of new materials, cost effective design, and analysis and prediction of structural behaviour have all established a need for timely, wide ranging research on impact behaviour.
Impact Behaviour of Fibre-Reinforced Composite Materials and Structures brings together - for the first time - state-of-the-art research from the most recent works of leading, international experts. An important new study, this book extensively investigates impact response, damage tolerance, and failure of fibre-reinforced composite materials and structure, from a number of expert viewpoints.
This book explores the nature of modern polymer composites based on glass, carbon, aramid, ceramic and polymer fibres in a polymer matrix, and details various ways of analysing the impact process. Impact Behaviour of Fibre-Reinforced Composite Materials and Structures will prove itself a valuable tool for research and development engineers, structural engineers, materials scientists, designers, and students and researchers of related disciplines.
An overview of the impact behaviour of fibre-reinforced resin composites. Recent developments in impact damage assessment of fibre composites, J.K. Kim, Hong Kong University of Science and Technology. Modelling impact of composite structures using small specimens, C. Ruiz and J. Harding, University of Oxford. Impact damage-tolerant composite structure design, R.L. Sierakowski, Ohio State University, USA. Damage tolerance of thick woven roving CFRP plates subjected to low velocity impact, G. Zhou and L.G. Greaves, Loughborough University, U.K. Impact stress analysis of composite plates and tubes, S.R. Swanson, University of Utah, USA. Impact behaviour and analysis of CFRP laminated plates, E. Wu and Dr. Tsai, National Taiwan University, Taiwan. Response of GRP composite sandwich panels to impact and blast loading, S.R. Reid and H.M. Wen, UMIST, Manchester, UK. High velocity impact damage to polymer matrix composites, R.C. Tennyson and Dr. Montagne, University of Toronto, Canada.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation: