Engineers and researchers concerned with the problems of thin-walled structures have a choice of books on shell theory. However, the almost exclusive concern of these books are shells designed for maximum strength and stiffness. Shells which are designed for maximum elastic displacements (flexible shells) have been used in industry for decades, but are largely ignored in shell-theory books due to tradition and to the wide variety of shapes and problems involved. This book presents the general theory of elastic shells and the deformation inherent in flexibility. For the analysis of stability of the two-dimensionally variable large elastic deformations, a local approach is developed. The specialized theory is then applied to the basic problems of flexible shells - tubes, open-section beams and shells of revolution. The results of parametric studies are presented in numerous graphs.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
The necessity to save steel leads to a marked tendency towards thin-walled structures. Such structures are made of thin plating, the behaviour - and, of course, design - of which is very significantly affected by stability phenomena. In fact, with up-to-date thin-walled steel plated structures, it is very frequently the point of view of stability that governs the design. So it is not astonishing that the attention of a great number of research teams in various parts of the world has been for a good many years directed to investigations into numerous aspects of the buckling behaviour of steel plated structures. However, the current problems of buckling research, which require to account for the effect of initial imperfections, post-buckled behaviour and plastic reserve of strength (this leading in theoretical research to the necessity to solve boundary value problems of geometrically and physically non-linear partial differential equations, and in experimental studies to conduct experiments on full-size test girders) are very complex and time-consuming. Then it is beyond the means of one investigator, or even of one research team, to deal successfully with such problems and, conse quently, effective cooperation is indispensable. This was also the reason for the initiation of a fruitful collaboration between the first author of this book (Assoc. Prof. J. Djubek, D. Sc. ) and the third author (Assoc. Prof. M. Skaloud, D. Sc.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Guide Specifications for Strength Design of Truss Bridges (Load Factor Design), 1985
Size: 600 KB | Format:PDF | Quality:Scanner | Publisher: American Association of State Highway and Transportation Officials (AASHTO) | Year: 1986 | Pages: 9 | ISBN: 9781560512127, 1560512121
These Guide Specifications apply to truss spans over 500 feet long. Unless amended herein (amended to 1986) the existing provisions of the AASHTO Standard Specifications for Highway Bridges apply to truss bridge superstructures designed by the Strength Design Method. The following areas are covered: load factors, truss members, secondary stresses, perforated cover plates and lacing bars, half through spans; net section of tensions members; computation of member capacity; compression members - thickness of metal; eyebar pins; and gusset plates.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Dynamic instability or dynamic buckling as applied to structures is a term that has been used to describe many classes of problems and many physical phenomena. It is not surprising, then, that the term finds several uses and interpretations among structural mechanicians. Problems of parametric resonance, follower-force, whirling of rotating shafts, fluid-solid interaction, general response of structures to dynamic loads, and several others are all classified under dynamic instability. Many analytical and experimental studies of such problems can be found in several books as either specialized topics or the main theme. Two such classes, parametric resonance and stability of nonconservative systems under static loads (follower-force problems), form the main theme of two books by V. V. Bolotin, which have been translated from Russian. Moreover, treatment of aero elastic instabilities can be found in several textbooks. Finally, analytical and experimental studies of structural elements and systems subjected to intense loads (of very short duration) are the focus of the recent monograph by Lindberg and Florence. The first chapter attempts to classify the various "dynamic instability" phenomena by taking into consideration the nature of the cause, the character of the response, and the history of the problem. Moreover, the various concepts and methodologies as developed and used by the various investigators for estimating critical conditions for suddenly loaded elastic systems are fully described. Chapter 2 demonstrates the concepts and criteria for dynamic stability through simple mechanical models with one and two degrees of freedom.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
The aim of this book is to present up-to-date methodologies in the analysis and optimization of the elastic stability of lightweight statically determinate, and in- determinate, space structures made of flexible members which are highly stiff when loaded centrally at the nodes. These are flat and curved space pin- connected open or enveloped lattices and reticulated shells which, due to their high loadbearing capacity to weight ratios, are gaining in importance in aerospace and other fields. They are utilized, for example, in space stations, as support structures for large radio-telescopes and for other equipment on earth and in outer space, as roof structures for the coverage and enclosure of large areas on earth and as underwater shell-type structures enveloped by a cover-shell capable of withstanding high hydrostatic pressures. ? Space structures of this type are generally subjected to considerable internal axial loads in the flexible members and they fail through the loss of global statical stability, usually precipitated by the intrinsic small imperfections at finite near-critical elastic deformations - and not primarily by the the break-down of the material of which they are made, as is the case in conventional systems. Thus, the criterion in the design of such structures calls for eliminating or isolating the onset of the elastic dynamic collapse thereby increasing their safe stability limit. ? Standard finite element methods, as they are employed by most users today, are totally inadequate for such analyses since they do not account for the choice of the branching paths in the loading process of the structure nor for the existence of the relevant collapse modes. ? These aspects are novel and they are presented here for the first time in comprehensive book form.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
Article/eBook Full Name: Dynamics of Pavement Structurres
Author(s): Martincek Gustav , Gustav Martincek , G Martincek
Edition: First Edition
Publish Date: 1995
ISBN: 9780419181002
Published By: CRC Press
Related Links:
[/align]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation: