Displacement-based Seismic Design of Shear Wall Buildings
Author: Freddy Eduardo Pina Burgos | Size: 7.5 MB | Format: PDF | Quality: Unspecified | Publisher: Carleton University (Canada) | Year: 2006 | pages: 300 | ISBN: 0494183314, 9780494183311
A displacement-based method of seismic design (DBSD) is presented with particular reference to the design of reinforced concrete shear wall buildings. For preliminary design, approximate estimates of the yield and ultimate displacements are obtained, the former from simple empirical relations, and the latter to satisfy the following criteria: (1) satisfy code-specified drift limits, (2) ensure stability under P-Delta effects, and (3) keep the ductility demand within ductility capacity. For a multi-storey building the structure is converted to an equivalent single-degree-of-freedom (SDOF) system using an assumed deformation shape that is representative of the first mode. The required base shear strength of the SDOF system is determined from the inelastic demand spectrum corresponding to the ductility demand, which is the ratio of ultimate to yield displacement. The base shear is distributed across the height using an assumed pattern, such as the one given by the National Building Code of Canada, and the structure is designed for the moments produced by the estimated shears. (Abstract shortened by UMI.)
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
http://forum.civilea.com/thread-27464.html
***************************************