04-21-2016, 08:13 AM
Modelling and simulation aspects of performace-based wind engineering of tall buildings
Author(s)/Editor(s): GORDON HENRY CLANNACHAN | Size: 6,5 MB | Format: PDF | Quality: Unspecified | Publisher: University of Strathclyde, Glasgow | Year: 2012 | pages: 266
Author(s)/Editor(s): GORDON HENRY CLANNACHAN | Size: 6,5 MB | Format: PDF | Quality: Unspecified | Publisher: University of Strathclyde, Glasgow | Year: 2012 | pages: 266
The study is concerned with developing an adequate Performance-Based Wind Engineering (PBWE) framework for tall building design. The focus is to introduce advanced modelling and simulation techniques to improve key analysis stages, namely by using Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). The clearly defined five stage PBWE framework is realised and implemented using both existing and newly developed simulation components. The performance of the developed process is explored by comparative PBWE analyses to assess the wind-induced behaviour of two tall building designs with distinctly different cross sections; a regular rectangular cross section and an irregular āLā-shaped cross section.
The performance of CFD was primarily dependent on the turbulence model. On the basis of an extensive validation study, the Reynolds-Averaged Navier-Stokes (RANS) model was able to adequately compute the mean pressure coefficients acting on the benchmark CAARC tall building. However, its inability to sustain the atmospheric turbulence resulted in a significant under-estimation of the top floor accelerations. Hence, it was concluded that the RANS model is not suitable for competent PBWE studies. The results showed that the Large Eddy Simulation (LES) model offered the closest alternative to wind tunnel testing. However, full LES was too computationally expensive to be used for the PBWE framework, and hence a hybrid RANS-LES simulation strategy was formulated as a compromise. This was considered to offer an appropriate representation of the wind-induced pressure field without prohibitive complexities emanating from a full LES model.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
http://forum.civilea.com/thread-27464.html
***************************************
This thesis is submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy in the Department of Civil
Engineering, University of Strathclyde, Glasgow
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
http://forum.civilea.com/thread-27464.html
***************************************
This post has been made by CivilEA Post-Generator V2.3.1