10-29-2012, 06:53 AM
Damage Detection and Repair Methods for GFRP Bridge Decks
Author: Asencio, Rafael Brown, Jeff R | Size: 8.50 MB | Format: PDF | Quality: Original preprint | Publisher: University of Florida, Gainesville | Year: 2011 | pages: 193
Glass fiber-reinforced polymer (GFRP) decks are being considered for use as a replacement for worn steel grid bridge decks due to their high strength-to-weight ratio and fast installation time. In this research, two nondestructive evaluation techniques were considered for use in evaluating in-service GFRP bridge decks for damage: acoustic emissions (AE) and infrared thermography (IRT). Three different commercially available deck systems were tested in positive and negative bending test setups. The testing consisted of loading each specimen sequentially with service, then ultimate, then service level loads, which provided AE data for both undamaged and damaged deck specimens. Damage was induced on the specimens by loading them to their ultimate capacity. The specimens generally exhibited linear elastic behavior up to failure. AE feature data were evaluated using intensity analysis and recovery ratio analysis (RRA). The recovery ratio analysis was adapted from calm ratio analysis, which is based on the Kaiser effect. RRA provided clear distinction between damaged and undamaged decks in all three specimens. Evaluation criteria based on this method are proposed. A modified form of RRA was then used on data collected during a bridge load test of the Hillsboro canal bridge in Belle Glade, Florida.. Initial IRT work required finite element simulation of the heat transfer process to determine optimal heating and data acquisition parameters that were used to inspect GFRP bridge decks in the laboratory. Experimental testing was performed in a laboratory setting on damaged and undamaged GFRP bridge deck specimens from three different manufacturers. IRT evaluation focused on identifying damage in the specimens that had been loaded to their ultimate flexural strength. It was demonstrated that IRT successfully identified features of two types of GFRP bridge decks and that severe delamination/debonding could be detected under ideal circumstances. Additional research is needed to improve detection of severe damage, including methods to reduce the interference of surface imperfections, such as non-uniform heating, which are inherent to the GFRP bridge decks examined in the current study.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
http://forum.civilea.com/thread-27464.html
***************************************