Civil Engineering Association
SEISMIC ANALYSIS OF RETAINING WALLS WITHIN PLASTICITY FRAMEWORK - Printable Version

+- Civil Engineering Association (https://forum.civilea.com)
+-- Forum: eBooks (https://forum.civilea.com/forum-63.html)
+--- Forum: Journals, Papers and Presentations (https://forum.civilea.com/forum-74.html)
+--- Thread: SEISMIC ANALYSIS OF RETAINING WALLS WITHIN PLASTICITY FRAMEWORK (/thread-47435.html)



SEISMIC ANALYSIS OF RETAINING WALLS WITHIN PLASTICITY FRAMEWORK - TAFATNEB - 04-27-2014

SEISMIC ANALYSIS OF RETAINING WALLS WITHIN PLASTICITY FRAMEWORK

Author: T.Kalasin and D. Muir Wood | Size: 310 KB | Format: PDF | Quality: Unspecified | Publisher: The 14 th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China | Year: 2008 | pages: 11

[Image: 84670067750653684519.png]


[Image: info.png]

Aseismic design of gravity wall still is a more difficult issue. The reason stems from the complexity of the problem which requires skills in soil mechanics, foundation engineering, soil-structure interaction along with knowledge of structure dynamics. Designing seismic gravity retaining structures deals with both kinematic interaction and inertial interaction but almost seismic building code neglected the soil-structure interaction by using the fixes base analysis of the structure. The gravity walls are a slender tall structure
and it was suggested to be taken into account of dynamic soil-structure interaction analysis because such walls often perform badly when subjected to strong earthquake ground motion. Also the permanent displacement should be evaluated when designing the seismic gravity walls so that the need of the most reliable approach to evaluate a wall’s vibration properties is required. In this paper, the alternative development of computed permanent responses was proposed in order to predict permanent responses of the
seismic wall. The proposed model was constructed within the concept of macro-element modelling the soil, foundation and the seismic earth pressures. The constitutive law for modelling soil and foundation were based on two-surface kinematic hardening with associated flow rule. The development of seismic earth pressures was based on the Mononobe-Okabe method (1929) and the elastic–perfectly plastic method (Muir Wood and Kalasin(2004)) which based on the kinematic hardening by updating of a reference position for the wall. A parametric study is presented and The results are compared with published experimental results.


[Image: download.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************