Civil Engineering Association
Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC) - Printable Version

+- Civil Engineering Association (https://forum.civilea.com)
+-- Forum: eBooks (https://forum.civilea.com/forum-63.html)
+--- Forum: Structural Books (https://forum.civilea.com/forum-49.html)
+---- Forum: Concrete (https://forum.civilea.com/forum-57.html)
+---- Thread: Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC) (/thread-34768.html)



RILEM: Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites - ir_71 - 12-13-2010

Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites

Author: Van Zijl, G.P.A.G.; Wittmann, F.H. (Eds.) | Size: 3.8 MB | Format: PDF | Publisher: Springer | Year: 2010 |
pages: 978-94-007-0337-7 | ISBN: 978-94-007-0337-7

[Image: 92491080809575768163.jpg]


[Image: info.png]

Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC) were named after their ability to resist increased tensile force after crack formation, over a significant tensile deformation range. The increased resistance is achieved through effective crack bridging by fibres, across multiple cracks of widths in the micro-range. Whether these small crack widths are maintained under sustained, cyclic or other load paths, and whether the crack width limitation translates into durability through retardation of ingress of moisture, gas and other deleterious matter, are scrutinized in this book by evaluation of test results from several laboratories internationally. The durability of SHCC under mechanical, chemical, thermal and combined actions is considered, both for the composite and the fibre types typically used in SHCC. The compilation of this state-of-the-art report has been an activity of the RILEM TC 208-HFC, Subcommittee 2: Durability, during the committee life 2005-2009.
Content Level » Research

Keywords » Fibre-reinforced - SHCC - Service Life - Strain-hardening cement-based composite - cement durability

Related subjects » Engineering - Structural Materials

Contents
ix
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 1
Gideon P.A.G. van Zijl and Folker H. Wittmann
1.1 Strain-hardeningCement-based Composites (SHCC) . . . . . . . . . . . 1
1.2 Classification and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Fundamentals of Durability Design for SHCC . . . . . . . . . . . . . . . . . 3
1.4 Crack Control as Durability Measure . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Report Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Durability under Mechanical Load – Micro-crack Formation
(Ductility) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Gideon P.A.G. van Zijl
2.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Ductility as Compared with the Sum of Possibly Imposed Strains . 10
2.3 Average and Maximal Opening of Micro-cracks during
Strain-hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 CrackWidth Evolution with Tensile Strain . . . . . . . . . . . . 13
2.3.2 Fibre Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Fibre Bond Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Influence of Matrix Composition . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Age at Loading, Curing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6 Crack Formation in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Width ofMicro-cracks in Loaded and Unloaded Specimens . . . . . . 21
2.5 Influence of Crack Width of Micro-cracks on Permeability and
Capillary Suction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Water Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Gas Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
v
Durability of Strain-hardening Fibre-reinforced Cement-based
Composites (SHCC) – State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi Contents
2.5.3 Chloride Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Sustained and Cyclic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Abrasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Self-healing ofMicro-cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Durability under Chemical Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Byung H. Oh and Petr Kabele
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Chloride Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Chloride Penetration: Corrosion Protection of
Reinforcement in Concrete . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Effects onMicromechanical Properties . . . . . . . . . . . . . . . 44
3.2.3 Self-healing and Effects on Performance in Uniaxial
Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Hydrolysis and Leaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Effects on the Fibre-matrix Interfacial Transition Zone . . 47
3.3.2 Effects onMicromechanical Properties . . . . . . . . . . . . . . . 49
3.4 Hot and Humid Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Alkali Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Resistance with Respect to SulphateAttack . . . . . . . . . . . . . . . . . . . 53
3.7 Alkali-aggregateReaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4 Durability under Thermal Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Romildo D. Toledo Filho, Eduardo M.R. Fairbairn, and Volker Slowik
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Behaviour at Elevated Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Thermal Cracking at EarlyAge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Frost Resistance and Action of De-icing Salts. . . . . . . . . . . . . . . . . . 64
4.4.1 SHCC Freeze-thaw and De-icing Resistance as Tested
According to ASTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 SHCC Freeze-thaw and De-icing Resistance as Tested
with the RILEMTC-117 Procedure . . . . . . . . . . . . . . . . . . 66
4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 Durability under Combined Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Folker H. Wittmann
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Imposed Strain and Penetration of Aggressive Compounds. . . . . . . 75
5.3 Frost Action and Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Hydrolysis and Ultimate Strain Capacity . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Mechanical Load and Alkaline Environment . . . . . . . . . . . . . . . . . . . 77
Contents vii
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6 Durability of Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Atsuhisa Ogawa and Hideki Hoshiro
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Typical Properties of Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Durability of PVA Fibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Accelerated Test in Alkaline Environment . . . . . . . . . . . . . 82
6.3.2 Accelerated Tests in Chemical Exposure . . . . . . . . . . . . . . 84
6.4 Durability of PVA Fibre-reinforced Cement-based Composites . . . 85
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7 Durability of Structural Elements and Structures . . . . . . . . . . . . . . . . 89
Viktor Mechtcherine and Frank Altmann
7.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Characteristic Mechanical, Environmental, and Combined Loads . 90
7.3 Basics for the Durability Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.2 Protection of Steel Reinforcement fromCorrosion . . . . . . 93
7.3.3 Durability of the SHCC Matrix . . . . . . . . . . . . . . . . . . . . . . 95
7.3.4 Fibre Durability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.5 Fibre-matrix Bond Durability . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Characteristic Material Properties to Predict Long-term
Durability and Service Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4.2 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.4.3 Strain Capacity of SHCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.4 Resistance of SHCC in Aggressive Environments . . . . . . . 100
7.4.5 Size Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5.2 Patch Repair of BridgeDeck;Michigan,USA. . . . . . . . . . 102
7.5.3 Surface Repair of RetainingWall; Japan . . . . . . . . . . . . . . 104
7.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Durability, Economical, Ecological, and Social Aspects: Life-cycle
Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Michael D. Lepech
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Life-cycle Impacts and Costs versus Initial Costs and Impacts of
Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 RawMaterial Recycling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.4 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
viii Contents
8.5 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
KeyWords Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

[Image: Download.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************


[Image: password.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************





Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC) - hessi - 03-26-2012

Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC)
State of the Art Report Prepared by Subcommittee 2 of RILEM Technical Committee 208-HFC Chaired by Professor Victor C. Li


Author: G.P.A.G. van Zijl| Size: 3.83 MB | Format: PDF | Quality: Unspecified | Publisher: Springer | Year: 2011 | pages: 151 | ISBN: 9789400703377


[Image: info.png]
Ideal for both researchers and practitioners
Offers a comprehensive discussion of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC)
Includes field applications

Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC) were named after their ability to resist increased tensile force after crack formation, over a significant tensile deformation range. The increased resistance is achieved through effective crack bridging by fibres, across multiple cracks of widths in the micro-range. Whether these small crack widths are maintained under sustained, cyclic or other load paths, and whether the crack width limitation translates into durability through retardation of ingress of moisture, gas and other deleterious matter, are scrutinized in this book by evaluation of test results from several laboratories internationally. The durability of SHCC under mechanical, chemical, thermal and combined actions is considered, both for the composite and the fibre types typically used in SHCC. The compilation of this state-of-the-art report has been an activity of the RILEM TC 208-HFC, Subcommittee 2: Durability, during the committee life 2005-2009.
[Image: download.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************



RE: RILEM: Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites - shadabg - 10-21-2012

Active Link :


***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************


[Image: password.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************