Civil Engineering Association
Crystal Plasticity Finite Element Methods: in Materials Science and Engineering - Printable Version

+- Civil Engineering Association (https://forum.civilea.com)
+-- Forum: eBooks (https://forum.civilea.com/forum-63.html)
+--- Forum: Structural Books (https://forum.civilea.com/forum-49.html)
+---- Forum: Finite Element Methods (https://forum.civilea.com/forum-94.html)
+---- Thread: Crystal Plasticity Finite Element Methods: in Materials Science and Engineering (/thread-28562.html)



Crystal Plasticity Finite Element Methods: in Materials Science and Engineering - mastermind - 08-17-2011

Crystal Plasticity Finite Element Methods
in Materials Science and Engineering

Author: Franz Roters, Philip Eisenlohr, Thomas R. Bieler, Dierk Raabe | Size: 4.14 MB | Format: PDF | Year: 2010 | pages: 209

[Image: 18544549519633647459.jpg]

[Image: info.png]

In the last 20 years, the Crystal Plasticity Finite Element Method (CPFEM) has developed into an extremely versatile tool for describing the mechanical response of crystalline materials on all length scales from single crystals to engineering parts. While this is clearly reflected by an ever increasing number of publications in scientific journals, to date there is no comprehensive monograph on the topic. To change this situation the authors have brought together their experience with CPFEM into the current book. The aim of the book is to give an overview of the wide field of models and applications in CPFEM at both small and large scales, and to give some practical advice to beginners.
The book is organized as follows: The introduction gives a comprehensive overview over the development of the application of CPFEM in the last 20 years. The first part gives an introduction into the fundamentals on which the Crystal Plasticity Finite Element Method is built. As it works in the interface of material physics, continuum mechanics and applied computer science the reader finds one chapter on each of these aspects. In the second part the Crystal Plasticity Finite Element Method is introduced in detail. First, different single crystal constitutive models are presented, including deformation mechanisms such as dislocation slip, twinning, athermal transformations, and damage. Second, in view of large scale applications, different homogenization schemes for the transition from single to polycrystals are introduced. Finally, some numerical aspects of importance for the practical implementation of CP as a material model in FEM codes are discussed. The last and by farmost elaborate part of the book is concerned with application examples. Naturally, most of these examples originate from the work of the authors, plus some important examples taken from the work of other groups. The aim of this part of the book is to give an overview on the numerous potential applications of CPFEM in materials simulation and closes with an outlook of the authors on future applications of the Crystal Plasticity Finite Element Method.

[Image: Download.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************




RE: Crystal Plasticity Finite Element Methods: in Materials Science and Engineering - jokerâ„¢ - 08-17-2011

HotFile Mirror
[Image: Download.png]
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************