05-30-2014, 02:05 PM
SEISMIC SHEAR DEMAND IN HIGH-RISE CONCRETE WALLS
Author: BABAK RAJAEE RAD | Size: 4.5 MB | Format: PDF | Quality: Unspecified | Publisher: THE UNIVERSITY OF BRITISH COLUMBIA | Year: 2009 | pages: 268
Concrete shear walls are used as the seismic force resisting system in many high-rise buildings in Western Canada. During earthquake, the response of a high-rise concrete wall as it undergoes severe cracking of concrete and yielding of reinforcement is very complex. In particular, the nonlinear shear behaviour of concrete shear walls is not well known; therefore available analysis programs generally use very primitive models for nonlinear shear behaviour. GĂ©rin and Adebar (2004) quantified the observed experimental results on reinforced concrete membrane elements and presented a simple
nonlinear shear model that included the influence of concrete diagonal cracking, yielding, of horizontal reinforcement and ultimate shear capacity. There are a number of important issues in the design of high-rise concrete shear walls where shear deformations play a very important role and hence nonlinear shear behaviour will have a significant influence. In this dissertation, three different seismic design issues where nonlinear shear response plays a significant role are investigated.
The first issue which is of considerable concern to designers is the large reverse shear force in high-rise concrete walls due to rigid diaphragms below the flexural plastic hinge. The nonlinear analyses that were carried out in this study show that diagonal cracking and yielding of horizontal reinforcement significantly reduce the magnitude of reverse shear force compared to what is predicted by using linear analysis procedures. A second issue where nonlinear shear behaviour has a significant influence is associated with the shear force distribution between inter-connected high-rise walls of different lengths. The results presented in this work, show that when diagonal cracking is included in the analysis, significant redistribution of shear forces takes place between walls and all walls do not necessarily yield at the same displacement.
Code:
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:
http://forum.civilea.com/thread-27464.html
***************************************