ANALYSIS OF STEEL PLATE SHEAR WALLS USING THE MODIFIED STRIP MODEL
Current time: 07-16-2018, 05:58 AM
Users browsing this thread: 1 Guest(s)
Author: david-smith
Last Post: david-smith
Replies 0
Views 1158

ANALYSIS OF STEEL PLATE SHEAR WALLS USING THE MODIFIED STRIP MODEL
#1
ANALYSIS OF STEEL PLATE SHEAR WALLS USING THE MODIFIED STRIP MODEL

Author: Jonah J. Shishkin,Robert G. Driver | Size: 2.80 MB | Format: PDF | Quality: Original preprint | Publisher: University of Alberta | Year: 2005 | pages: 164

[Image: 58527416467716014584.jpg]


[Image: info.png]

ABSTRACT
Unstiffened steel plate shear walls are an effective and economical method of resisting
lateral forces on structures due to wind and earthquakes. Engineers in the workplace
require the ability to assess the inelastic structural response of steel plate shear walls
using conventional analysis software that is commonly available and is relatively simple
and expeditious to use. The strip model, a widely accepted analytical tool for steel plate
shear wall analysis, is refined based on phenomena observed during loading of steel plate
shear walls in the laboratory. These observations are modelled first in detail and then
simplified to provide an accurate prediction of the overall inelastic behaviour, while
being efficient to model. The modifications are tested on several test specimens to
validate their use. A parametric study examines the effect of varying the angle of
inclination of the tension strips on the predicted inelastic behaviour of the model.
TABLE OF CONTENTS
ABSTRACT....................................................................................................................... i
ACKNOWLEDGEMENTS ............................................................................................. ii
TABLE OF CONTENTS ................................................................................................ iii
LIST OF TABLES........................................................................................................... vi
LIST OF FIGURES........................................................................................................ vii
LIST OF SYMBOLS ....................................................................................................... ix
1. INTRODUCTION...................................................................................................... 1
1.1 BACKGROUND ........................................................................................................ 1
1.2 OBJECTIVES AND SCOPE ......................................................................................... 1
1.3 CHAPTER OVERVIEW.............................................................................................. 2
2. LITERATURE REVIEW.......................................................................................... 4
2.1 INTRODUCTION....................................................................................................... 4
2.2 MIMURA AND AKIYAMA (1977) ............................................................................. 5
2.3 THORBURN ET AL. (1983)........................................................................................ 5
2.4 TIMLER AND KULAK (1983) ................................................................................... 7
2.5 TROMPOSCH AND KULAK (1987)............................................................................ 8
2.6 ELGAALY ET AL. (1993A)........................................................................................ 9
2.7 XUE AND LU (1994) ............................................................................................. 10
2.8 DRIVER ET AL. (1997; 1998A, B)........................................................................... 11
2.9 ELGAALY AND LIU (1997) .................................................................................... 14
2.10 LUBELL (1997) ..................................................................................................... 14
2.11 TIMLER ET AL. (1998) ........................................................................................... 17
2.12 REZAI (1999)........................................................................................................ 18
2.13 ASTANEH-ASL (2001) .......................................................................................... 19
2.14 KULAK ET AL. (2001) ............................................................................................ 19
2.15 BEHBAHANIFARD ET AL. (2003) ............................................................................ 21
2.16 BERMAN AND BRUNEAU (2003) ........................................................................... 22
2.17 KHARRAZI ET AL. (2004)....................................................................................... 23
3. DETAILED MODEL............................................................................................... 33
3.1 INTRODUCTION..................................................................................................... 33
3.2 TEST SPECIMEN AND MODEL GEOMETRY AND LOADING ..................................... 34
3.3 PANEL ZONES....................................................................................................... 35
3.4 PLASTIC HINGES................................................................................................... 36
3.5 COMPRESSION STRUT ........................................................................................... 38
3.6 DETERIORATION OF INFILL PLATE........................................................................ 39
3.7 DETAILED MODEL ANALYSIS AND RESULTS ........................................................ 40
3.7.1 Pushover Analysis Overview............................................................................ 40
3.7.2 Pushover Analysis of the Detailed Model ........................................................ 42
3.7.3 Pushover Analysis Results................................................................................ 43
3.8 SUMMARY ............................................................................................................ 44
4. THE SIMPLIFIED MODEL................................................................................... 53
4.1 INTRODUCTION..................................................................................................... 53
4.2 FRAME–JOINT ARRANGEMENT............................................................................. 53
4.3 CROSSHATCHING OF DIAGONAL TENSION STRIPS................................................. 55
4.4 BILINEAR PLASTIC HINGES................................................................................... 56
4.5 DETERIORATION HINGE AND COMPRESSION STRUT ............................................. 57
4.6 PUSHOVER ANALYSIS RESULTS FOR THE SIMPLIFIED MODEL .............................. 58
4.7 SENSITIVITY ANALYSIS ON THE COMPRESSION STRUT LIMITING STRESS............. 59
4.8 MODIFIED STRIP MODEL FRAME FORCE RESULTS................................................ 59
4.9 SUMMARY ............................................................................................................ 61
5. VALIDATION OF THE MODIFIED STRIP MODEL....................................... 77
5.1 INTRODUCTION..................................................................................................... 77
5.2 TIMLER AND KULAK (1983) SPECIMEN ................................................................ 77
5.2.1 Model Geometry and Loading.......................................................................... 77
5.2.2 Analysis Results and Model Refinements......................................................... 80
5.3 LUBELL (1997) ONE–STOREY SPECIMEN (SPSW2).............................................. 82
5.3.1 Model Geometry and Loading.......................................................................... 82
5.3.2 Analysis Results and Model Refinements......................................................... 83
5.4 LUBELL (1997) FOUR–STOREY MODEL (SPSW4)................................................ 85
5.4.1 Model Geometry and Loading.......................................................................... 85
5.4.2 Analysis Results and Model Refinements......................................................... 86
5.5 SUMMARY ............................................................................................................ 87
6. PARAMETRIC STUDY.......................................................................................... 97
6.1 INTRODUCTION..................................................................................................... 97
6.2 DESIGN CRITERIA ................................................................................................. 97
6.3 PARAMETERS...................................................................................................... 100
6.4 ONE-STOREY MODELS ....................................................................................... 101
6.4.1 Model Arrangement and Design .................................................................... 101
6.4.2 Analysis and Results....................................................................................... 103
6.5 FOUR-STOREY MODELS...................................................................................... 104
6.5.1 Model Arrangement and Design .................................................................... 104
6.5.2 Analysis and Results....................................................................................... 105
6.6 FIFTEEN-STOREY MODELS ................................................................................. 108
6.6.1 Model Arrangement and Design .................................................................... 108
6.6.2 Analysis and Results....................................................................................... 109
6.7 SUMMARY .......................................................................................................... 110
7. SUMMARY AND CONCLUSIONS..................................................................... 129
7.1 SUMMARY .......................................................................................................... 129
7.2 CONCLUSIONS .................................................................................................... 132
7.3 RECOMMENDATIONS FOR FUTURE RESEARCH.................................................... 134
REFERENCES.............................................................................................................. 136
APPENDIX A................................................................................................................ 141
1. INTRODUCTION
1.1 Background
Numerous research programs have confirmed that steel plate shear walls are an effective
method of resisting lateral forces on structures such as those due to wind and
earthquakes. Moreover, they have been shown to be an economical solution (Timler et al.
1998). A conventional steel plate shear wall consists of thin and unstiffened steel plates
bounded by steel columns and beams. Steel plate shear walls can be multiple storeys high
and can be one or more bays wide with either simple shear or moment–resisting beam-tocolumn
connections. The primary mechanism for resisting storey shears arising from
lateral loads comes from the post-buckling inclined tension field that forms in the infill
plate. Steel plate shear walls have been shown to possess considerable strength, ductility,
redundancy, and robustness (e.g., Timler and Kulak 1983, Driver et al. 1997; 1998a).
Modern design codes and standards are increasingly requiring an accurate assessment of
inelastic structural response. However, current methods of analysing steel plate shear
walls to obtain a reasonable approximation of the complete structural response curve
require the use of sophisticated nonlinear finite element software or, alternatively, elastic
analyses that must be supplemented with time consuming hand calculations. While
research institutions often use powerful and sophisticated software packages, they are not
common in industry. Design engineers require the ability to assess inelastic structural
response using conventional analysis software that is commonly available and is
relatively simple and expeditious to use. Most analysis software used by design engineers
are elastic analysis programs that utilise inelastic methods, such as rigid–plastic hinges, to
approximate the post-yield behaviour of a structure.
1.2 Objectives and Scope
This research proposes refinements to the strip model, as described by Thorburn et al.
(1983), to obtain a more accurate prediction of the inelastic behaviour of steel plate shear
walls using a conventional structural engineering software package. The refinements are
based on observations from laboratory tests on steel plate shear wall specimens.
Modelling efficiency is also evaluated against accuracy of the solution. A modifiedversion of the strip model is proposed, which is shown to be efficient to generate while
maintaining a high degree of accuracy. The parameters of the proposed model are generic
and can be implemented into any structural analysis program with pushover analysis
capabilities. A parametric study is also performed to determine the sensitivity of the
predicted nonlinear behaviour to variations in the angle of inclination of the infill plate
tension field.
The research focuses on the pushover analysis method to obtain a good prediction of the
inelastic behaviour of steel plate shear wall test specimens, which for cyclically loaded
specimens is best captured by the envelope of the hysteresis curves. The research is
limited to the analysis of unstiffened steel plate shear walls with relatively thin infill
plates that contain no openings. While other analytical methods have been proposed to
predict the inelastic behaviour of steel plate shear walls, they are not examined in detail
in this report.




[Image: download.png]
***************************************
Content of this section is hidden, You must be registered and activate your account to see this content. See this link to read how you can remove this limitation:

http://forum.civilea.com/thread-27464.html
***************************************



[-] The following 9 users say Thank You to david-smith for this post:
  • jcbv, cace-01, subin91, Dell_Brett, Jackass, malc, kowheng, simanta, sodapas
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
Strength and Drift Capacity of GFRP- Reinforced Concrete Shear Walls TAFATNEB 0 1,032 03-16-2016, 10:41 AM
Last Post: TAFATNEB
A NEW MODEL FOR JOINT SHEAR FAILURE OF REINFORCED CONCRETE INTERIOR BEAM-TO-COLUMN JO TAFATNEB 0 959 06-01-2014, 04:35 PM
Last Post: TAFATNEB
MECHANICAL NONLINEAR SHEAR WALL MODEL TAFATNEB 0 1,062 05-30-2014, 02:20 PM
Last Post: TAFATNEB
PUSHOVER ANALYSIS FOR PERFORMANCE BASED-SEISMIC DESIGN OF RC FRAMES WITH SHEAR WALLS TAFATNEB 0 1,367 04-11-2014, 10:13 AM
Last Post: TAFATNEB
Seismic strengthening of RC structures with exterior shear walls TAFATNEB 0 1,463 11-24-2013, 01:03 AM
Last Post: TAFATNEB



Users browsing this thread: 1 Guest(s)